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RTCC REQUIREMENTS FOR MISSION H PROGRAM FOR COMPUTATION OF LM IMU
TORQUING ANGLES WITH THE LM AND CSM IN THE DOCKED CONFIGURATION

By A. David Long
1.0 ©SUMMARY AND INTRODUCTION

The purpose of this document is to present the Real-Time Computer
Complex (RTCC) requirements for a program to compute and display gyro
torquing angles for the lunar module (IM) platform with the LM and com-
mand/service module (CSM) in the docked configuration. The philosophy
of this method makes use of gimbal angle data from the docked configura-
tion to compute torquing angles for the LM platform while the LM and CSM
are docked. This method, the eigen vector method, differs from the pre-
sent fine alinement procedure because its solution for torquing angles
is completely independent of navigation base misalinements between the
two vehicles (LM and CSM). The correct torquing angles can be computed
by this method even if the IM and CSM navigation bases have nonnominal
alinement in all three axes.

The eigen vector method is analogous to an Apollo optical telescope
(AOT) alinement in procedure and accuracy. Two rotation vectors are com-
puted from three attitudes of the docked configuration, and these rota-
tion vectors are then used in the same way that optical sightings on
celestial bodies would be used. The necessary data to determine two
rotation vectors and subsequently to determine torquing angles required
to aline the LM platform to the CSM platform are three sets of gimbal
angles read simultaneously from the LM and CSM. The two rotation vectors
are expressed in IMU coordinates and are used to construct an inertial
reference system. This inertial reference system can then be used to
locate the LM platform relative to the CSM platform and the resultant
torquing angles.

It is not necessary that the CSM platform have the desired orienta-
ticn of the LM platform to use this method. This program should be
general in nature and should have the capability to compute torquing
angles necessary to aline the LM platform to any desired REFSMMAT. This
capability is noted in the equations.



2.0 MODE 1 METHOD AND EQUATIONS

To obtain two directions of rotation in space (S and P) with respect

to the CSM and LM IMU,
ber to navigation base
angles (three sets for

the following procedure is used. The stable mem-
matrix (SMNB) is computed for three sets of gimbal
the LM and three for the CSM).

cos IGA 0 -sin IGA |
Ql = 0 1 0
sin IGA O cos IGA (1a)
cos MGA sin MGA 0
Q2 = | -sin MGA cos MGA 0
0 0 1 (1b)
1 0 0
Q3 = 0 cos OGA sin OGA
0 -sin OGA cos OGA (1c)
S = (14)
(o] = [o,]la,)lq, ]
A total of six such computations give [SMNBl] .. [SMNB6]. After

these six computations

have been completed, the following computations

are necessary both for the LM and the CSM.

Computations for the CSM are presented in equations (2), (3), and

(4).

[r1]

T
[SMNB, 1oy, [SMNB,] g (2a)

] T

(r2] = [8MNB, ] gy [SMVB3] gy (2p)
_ T 2

[s]CSM = [R1]" - [R1] (2¢)

[p] .. = [R2]T - [R2] (24)

[
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RV

lCSM (rotation vector 1 for CSM) = Unit [832, 813, 821] (3)

RV2 (rotation vector 2 for CSM)

|‘II’ ' CSM

These vectors (RV1

P, ] (L)

Unit [P32, P13’ o1

RV ) are the rotation vectors or eigen vectors

csM? 2CSM ,
normal to the plane of rotation and are expressed in CSM IMU coordinates.
These two vectors are analagous to AOT sightings on celestial bodies and
are used in the same manner to construct a reference coordinate system.

Similar computations for the LM are presented in equations (5), (6),

and (7).
[R1] = [SMNBh]LMT[SMNBS]LM (5a)
(r2] = [smwB,] \ [sMNB ] (5b)
. [S]LM = (R1]T - [R1] | (5¢)
(Pl = [R?]T - [R2] (5d)
RVL (rotation vector 1 for LM) = Unit [532, 813> 821] (6)
RV2, (rotation vector 2 for LM) = Uﬁit [P32, Pla Pgl] (7)

hese vectors (RV1 RV2. ) are the rotation vectors or eigen vectors

M LM

normal to the plane of rotation and are expressed in LM IMU coordinates.
These two vectors are analagous to AOT sightings on celestial bodies

. ard are used in the same manner to construct a reference coordinate system.



Generate an orthogonal coordinate system by use of the four rotation

vectors. The system for the CSM is given by equations (8) and (9).

system for the LM is given by equations (10) and (11).

UX = Unit [RV1 ]

C8M

UY = Unit [Unlt [RVlCSM] x Unit [RVECSM]]

Uz = [UX] x [UY]

Ux
N} =]UY
U2

UX = Unit [RVL]

UY = Unit [Unlt [RVlLM] x Unit [szLM]]

uz = [ux] x [uY]

UX
M| =]UY
| UZ

The

(8a)

(8b)

(8¢c)

(9)

(10a)

(10v)

(10c)

(11)

Determine the product according to equations (12) through (16) and

the following program.

Z2'y = Unit [-A (1,3), 0,A (1,1)]
sin ICA = 2'y (1)
cos IGA = Z', (3)

IGA = ARCTRIG [sin IGA, cos IGA] * 57.2957795

(12)

(13)

{(1ka)

(14v)

(1ke)




sin MGA = A (1,2)

\ ‘ cos MGA = z'D (3) *a (1,1) - Z'D (1) * A (1,3)

MGA = ARCTRIG [sin MGA, cos MGA] * 57.2957795

| sin OGA Z'D « [A (2,1), A (2,2), A (2,3)]

cos OGA = Z'_ + [A (3,1), A (3,2), A (3,3)]

D

} OGA = ARCTRIG [sin OGA, cos OGA] * 57.2957795

®FUNCTION ARCTRIC [S,C]

| SP = ABS [3]

‘ X = SIGN [1,5]

IF (SP - 0.7072) 1, 2, 2

2 ARCTRIG = X ¥ ARCOS [C]
GO TO 3
1 ARCTRIG = ARSIN [g]

IF (C) 14,3,3
v L ARCTRIG = X % 3,1L1592654 - ARCTRIG
3 CONTINUE

RETURN

1'II' END

a L. .
Output is in radians.

(15a)

(15b)

(15¢)
(16a)

(16b)

(16¢)



: ®
The following computations are necessary to determine the rotation angle
and the angle between the eigen vectors. The rotation angle represents

the amount of rotation (in degrees) of the docked configuration in the
plane of rotation.

The matrix [B] shall be represented as follows. .
] - ha
(8] = Py P1p P13

bo1 Pop Pog

b3; Psp b3§J

This [B] matrix describes the orthogonal transformation from navigation
base 1 orientation to navigation base 2 orientation or the first two
attitudes of the docked configuration.

¢ = rotation angle = ARCOS [(zi b, - 1.0)/2.0]

1
(from attitude 1 to attitude 2) (17)

The rotation angle will be computed for any two attitudes. There will .
be no sign associated with this angle.

The angle between the eigen vectors is the central angle (in
degrees) between the two pointing directions in space (8 and P). There
is also no sign associated with this angle.

= . l
6 ARCOS[RVlCSM RVQCSM] (18)

3.0 MODE 2 METHOD AND EQUATIONS

For this option, the assumption must be made that the LM and CSM
X~body axes are coincident. If this assumption can be made, then the
X~axis of the docked configuration is considered a rotation vector and
can replace the computation for one of the rotation vectors as explained
in mode 1. The X-axis can be expressed in CSM and LM IMU coordinates
by the direction cosines from the stable member to navigation base
matrix.




To obtain two directions in space (S and P) with respect to the
CSM and IM IMU, the following procedure is used. As in mode 1, the
matrices Ql’ Q2, and Q3 are computed.

cos IGA 0 -sin IGAT

Qi = 0 1 0
sin IGA 0 cos IGA
L. A
B N
cos MGA sin MGA 0
Q2 = -sin MGA cos MGA 0
L_ 0 0 1
1 0 0 “T

Q3 =10 cos OGA sin OGA

0
L

-sin OGA cos OGA
8

[siwB] = [Q;10q,10Q,]

Because there are only two attitudes for this option, a total of four
computations give [SMNBl]...[SMNBh]. Computations for the CSM are given

by equaticns (2a), (2c), (19), and (20). Computations for the LM are
given by equations (5a), (5c¢), (21), and (22).

] el

osM SMNB

[R1] = [sMNB

1 olesu (2a)

(8] e = [R1]T

—— - [r1] (2¢)

PR ’ A . & - s Q- a
<VLCSMkrotatlon vector 1 for CSM) Unit [032, 513, 021] (19)

If {SMNBl] = [Re] and [SMNBZ] [R3], then

csM csM

RVQCSM(rotation vector 2 for CSM) = - Unit [Rle, B2 5> R213] (20a)



or
RV2,gy (rotation vector 2 for CSM) = - Unit [RBll, R3.,5 R3l3] (20b)
[R1] = [sMuB,] T[SMNB ] (5a)
3'1M ISR
 §
(sl = [r1]" - [R1] (5¢)
M
_ .
V1, (rotation vector 1 for IM) = Unit [532, SIS 821] (21)
Let [SMNBl]LM = [R2] and [SMNBQ]LM = [Rr3].
RVELM (rotation vector 2 for IM) = Unit [REll, R212, R213] (22a)

or

RV2LM (rotation vector 2 for IM) = Unit [R3

117 R3100 R313] (22p) .

The same procedure is now used as in mode 1 to construct a reference
coordinate system and to solve for the torquing angles.

4,0 MODES 1 AND 2

Compute Q1l, Q2, and Q3 six times for three attitudes of the CSM and
three attitudes of the LM.
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sMNBl = [Q3][Q2][Q1]
sMNB2 = [Q3](Q2][Q1]
SMNB3 = [Q3][Q2][q1]
sMBY = [Q3][q2][Qq1]
SMNB5 = [Q3][Q2][qQ1]
SMNB6 = [Q3][Q2][Q1]

‘
Rlagy = [smvB1 ]t [sMvB2 ]
R2ngy = [smvB2 ]  [sMuB3]
Sagn = [r1])7 - [R1]
Pogy = [R2]T - [R2]

\
Rl = [smvBL ] [sMBs ]
R2 = [sMB5 )T [SMB6 ]
Sty = [R1) - [R1]
Pry = [R2]T - [R2]

[

RVlogy = Unit [S35, 8135 8y ]gy
RV2uqy = Unit [Pass Ppoy Poylogy
RVl ), = Unit [8,,, S ., S,1)iy
aRVQLM = Unit [Py5, Pias Poylpy

aFor mode 2, RV2

RV2

CSM
LM

Set
Set
Set
Set
Set
Set

W WD

CSsM
CoM
CSM
M
M
LM

-Unit [SMNB1(1,1), SMNB1(1,2), SMNB1(1,3)]
Unit [SMNBL(1,1), SMNBL(1,2), SMNBL(1,3)]
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UXyqyq = Unit [RVlCSM]

UY oy = Unit {Unit[RVlCSM] x Unit [szcSM]}
UZpgy = [UX] x [UY]

UX;y = Unit [RVlLM]

UY,, = Unit {Unit[RV]LM] x Unit [RV2LM]}
Uiy = [ux] x [uy]

(M]

CSM

CSM

C8M

a

[A1]

- [rEFSMMAT] [REFSMMAT]T[A]

IM DESIRED

CEM ACTUAL

|

#This additional computation is inserted to allow for torquing the
LM platform to any desired REFSMMAT (not necessarily the CSM platform
orientation).
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12

{

z) = Unit [-A1(1,3), 0, AX(1,1)]
Sin IGA = 2! (1)
D
Cos IGA = Z! (3)
D
Sin MGA = A1(1,2)
Cos MGA = Zp (3) * a1(1,1) - z (1) * a1(1,3)
Sin OGA = AN [A1(2,1), Al(2,2), A1(2,3)]
Cos OGA = zﬁ . [a1(3,1), A1(3,2), A1(3,3)]
Call Arctrig
Output torguing anglesa
IN, MI[, OT in degrees
b _
¢, = ARCOS [(zi RL,; 1.0)/2.0]
b 6. = ARCOS [(Z, R2,. - 1.0)/2.0]
2 i Te4i
— - o)
9 = ARCOS [RVlCSM RvaqﬁM}

1

Output angles ¢l, ¢2, 6 in degrees

a .
In - inner, MI - middle, OT - outer.

b
Rl and R2 are respectively RlC

d
an RECS

SM M*

"NASA — MSC




